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Abstract

This paper newly develops a method for the damage localization and severity estimate for three-dimensional frame

structures based on the employment of the cross modal strain energy (CMSE). While traditional modal strain energy

methods must compare the modal information between the same mode for the baseline (analytical) and damaged

(measured) structures, no such constraint is required for the CMSE method. Additionally, the CMSE method does not

require the analytical and measured modes to be consistent in scale, or to be normalized. Numerical studies in this paper

are conducted for three-dimensional five-story frame structures based on synthetic data generated from finite element

models, and excellent results are obtained for both single-damage and multiple-damage scenarios.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Any damage in the form of a loss of local stiffness in a structure would alter the dynamic properties of the
structure, including the modal frequencies and mode shapes. In consequence, the change in the modal
parameters, or quantities derived from them, can be used as indicators for damage diagnosis. Techniques
based on these changes for diagnosing damage in a structure have attracted much attention in recent years,
and many approaches have been developed.

The methods for damage diagnosis are commonly classified into four levels. While a higher level method
always includes issues covered in a lower level method, specific focus of each level is generally accepted as
follows: Level 1—determining whether damage occurs in the structure, Level 2—identifying the geometric
location of the damage, Level 3—quantifying the severity of the damage, and Level 4—predicting the
remaining service life of the structure. To date, vibration-based damage diagnosis methods that do not make
use of some structural model primarily provide Level 1 and Level 2 damage diagnosis. When vibration-based
methods are coupled with a structural model, Level 3 damage identification can be obtained in some cases.
Level 4 prediction is generally associated with the fields of fracture mechanics, fatigue-life analysis, or
structural design assessment [1].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-section area
b a column vector of size Nq

bm an element of bbbm estimated bm from ba
C an Nq-by-Nd matrix, composed of Cn;m

Cij structural cross modal strain energy
Cn;ij elemental cross modal strain energy

associated with the stiffness matrix K‘n

Cn;m same as Cn;ij with the index m to replace
ij

em normalized residue for each equation
kek norm of the vector e
E Young’s modulus
I moment of inertia
K system stiffness matrix
K‘n

the element stiffness matrix in global
coordinate corresponding to element
number ‘n

‘n the element number of the nth damaged
element

M system mass matrix
Nd the total number of the damaged mem-

bers
Ni the number of modes available for the

baseline structure
Nj the number of modes available for the

damaged structure
Nq total number of equations formed to

estimate the damage extent
a damage extentba estimate of a

an the damage extent of the nth element of
the structure

Ui the ith mode shape of the undamaged
system

li the ith eigenvalue of the undamage
system

� superscript used to indicate a damage
version
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Although the Level 3 damage diagnosis, including damage localization and severity estimate, has received
much attention, there are only very few articles that address the damage diagnosis for three-dimensional frame
structures. To detect the damage location and severity for a three-dimensional frame structure is a very
challenging task. It has been demonstrated recently in a benchmark study organized by the Structural Health
Monitoring Task Group, American Society of Civil Engineers [2]. An effective damage localization method
specifically for three-dimensional frame structures is the modal strain energy decomposition (MSED) method
developed by Li et al. [3]. The MSED method defines two damage indicators, axial damage indicator and
transverse damage indicator, for each member. Analyzing the joint information of the two damage indicators
greatly enhances the capability of localizing damage elements. However, the MSED method cannot achieve
satisfactory estimate for the corresponding damage severity. To improve the accuracy of the damage severity
estimation for three-dimensional frame structures, Hu et al. [4] developed the cross modal strain energy

(CMSE) method which has been demonstrated to be able to accurately estimate the damage degree of multiple
damaged members. However, the method was applicable only if the correct damage locations have been
identified previously. As suggested in Ref. [4], one way to perform a Level 3 damage diagnosis is by applying
one algorithm for the damage localization and implementing another algorithm for damage severity
estimation after the damage location has been identified. A more attractive approach however is to perform
the damage localization and damage severity estimate simultaneously. The primary objective of this article is
to develop a method that can effectively identify the geometric locations of the damaged members, as well as
accurately quantify their severity at same time for three-dimensional frame structures. The newly proposed
method is an extension of the CMSE method that has been originally developed only for damage severity
estimate [4]. The core of the CMSE method is to formulate simultaneous linear equations associated with
modal strain energy-like terms that are product terms crossing over the baseline (analytical) model and the
damaged (physical) structure, also crossing over various modes. Whereas traditional modal strain energy
methods for diagnosing damage are either using an iterative solution procedure [5] or involving rough
assumptions and significant approximations [6,7,3], the newly proposed CMSE method for damage
localization and severity estimate is an exact, non-iterative solution method. Additionally, the derivation of
the CMSE method dose not require the knowledge of the unchanged mass distributions of the baseline and
damaged structures.
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Numerical studies in this paper will be conducted for three-dimensional five-story frame structures based on
synthetic data generated from finite element models. Two particular tasks, single-damage and multiple-
damage scenarios, are to be performed. Task 1 considers three single-damage scenarios, with 5% stiffness loss
at a column, a long-span beam, and a short-span beam, respectively. Task 2 investigates the capability of the
CMSE method on diagnosing the damage for structures with multiple damaged members.

2. Cross modal strain energy (CMSE) method

The damage diagnosis method developed below formulates simultaneous equations involving quantities
equivalent to modal strain energy (MSE) terms that cross baseline and damaged structures, thus the method is
named as CMSE method [4], which is significantly different from any existing techniques that have applied the
concept of ordinary modal strain energy [5,6,8,9].

Denoting M and K as the mass and stiffness matrices for the baseline structure model, in the eigenanalysis
for the structure, one writes

KUi ¼ liMUi, (1)

where li and Ui, denote the ith eigenvalue and eigenvector, respectively. Likewise, one writes the
corresponding expression for the damaged structure as

K�U�j ¼ l�j M
�U�j , (2)

where M� and K� are the mass and stiffness matrices for the damaged structure, and l�j and U�j denote the
associated jth eigenvalue and eigenvector. Throughout the paper, superscript ‘‘�’’ is used to indicate a damage
version. In Eqs. (1) and (2), one can treat Ui and li as the analytical modal information for the baseline
structure, and U�j and l�j as the measured modal information from the damaged structure.

The development of the CMSE method is under the assumption that the mass distributions of the baseline
and damaged structures are not known, but without change, that is, M� ¼ M. In this method, quantities Ui,
li, K, U

�
j , and l�j are presumably given, the unknowns are K� and M. From Eqs. (1) and (2), the first step is to

eliminate the mass matrices M and M�. Pre-multiplying Eq. (1) by ðU�j Þ
T and Eq. (2) by ðUiÞ

T yields

ðU�j Þ
TKUi ¼ liðU

�
j Þ

TMUi, ð3Þ

ðUiÞ
TK�U�j ¼ l�j ðUiÞ

TMU�j . ð4Þ

Since M is a symmetric matrix, one shows that ½ðU�j Þ
TMUi�

T ¼ ðUiÞ
TMU�j . Also noting the transpose of a

scalar equals to itself, i.e., ½ðU�j Þ
TMUi�

T ¼ ðU�j Þ
TMUi, one thus has

ðU�j Þ
TMUi ¼ ðUiÞ

TMU�j . (5)

Theoretically, Ui and U�j are not orthogonal to the mass matrix even when iaj, unless there is no damage
occurred in the structure and therefore U�j ¼ Uj. Similarly, since K is a symmetric matrix, one shows that

ðU�j Þ
TKUi ¼ ðUiÞ

TKU�j . (6)

Dividing Eq. (4) by Eq. (3), and using the scalar identities of Eqs. (5) and (6), one obtains

ðUiÞ
TK�U�j

ðUiÞ
TKU�j

¼
l�j
li

. (7)

The above equation is defined only when ðUiÞ
TKU�j is not zero. Otherwise, Eq. (7) should be written as

liðUiÞ
TK�U�j ¼ l�j ðUiÞ

TKU�j . Let the stiffness matrix of the damaged structure be written as

K� ¼ Kþ
XNd

n¼1

anK‘n
, (8)

where the index n is a counter for the damaged elements; Nd is the total number of the damaged elements; and
an and ‘n are the damage extent and the element number of the nth damaged element, respectively.
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From Eqs. (7) and (8), one shows

1þ

PNd

n¼1anðUiÞ
TK‘n

U�j
ðUiÞ

TKU�j
¼

l�j
li

(9)

or

XNd

n¼1

anðUiÞ
TK‘n

U�j ¼
l�j
li

� 1

� �
ðUiÞ

TKU�j . (10)

Define the structural cross modal strain energy between the ith mode of the baseline structure and the jth mode
of the damaged structure as

Cij ¼ ðUiÞ
TKU�j (11)

and the corresponding elemental cross modal strain energy for the stiffness matrix K‘n
as

Cn;ij ¼ ðUiÞ
TK‘n

U�j . (12)

Now, Eq. (10) is written as

XNd

n¼1

anCn;ij ¼
l�j
li

� 1

� �
Cij . (13)

Using a new index m to replace ij, Eq. (13) becomes

XNd

n¼1

anCn;m ¼ bm, (14)

where

bm ¼
l�j
li

� 1

� �
Cij. (15)

When Ni and Nj modes are available for the baseline structure and damaged structure, respectively, totally
Nq ¼ Ni �Nj equations can be formed from Eq. (14). Written in a matrix form, one has

Ca ¼ b, (16)

in which C is an Nq-by-Nd matrix, a and b are column vectors of size Nd and Nq, respectively. When Nq is
greater than Nd , a unweighted least-squares estimate for a, denoted ba, is obtained as

ba ¼ ðCTCÞ�1CTb. (17)

It is worthy to mention that those Ni and Nj modes of the baseline and damaged structures can be arbitrary
modes in the sense that they are not required to start from the first mode. In practice, it is easy to obtain the
analytical modes of the baseline structure, but difficult or expansive to extract the measured modes of the
damaged structure, therefore one may choose a much larger Ni than Nj .

In the above derivation, using Eq. (8) implies that prior knowledge of the locations of the damage members
must be given. When the damage locations are not known, it is suggested to perform a residual analysis for
each suspicious scenario of the true damage locations. For each scenario, one follows the above procedure to
estimate ba first. Afterwards, substituting ba into Eq. (16), one writes the corresponding b as

bb ¼ Cba. (18)

The normalized residue for each CMSE equation then is calculated as

em ¼
bbm � bm

bm

; m ¼ 1; . . . ;Nq. (19)
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Denoting e to be the vector for all em, one calculates the norm of e as

kek ¼
ffiffiffiffiffiffiffi
eTe
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1Þ

2
þ � � � þ ðeNq

Þ
2

q
. (20)

The quantity kek can be employed as an indicator to quantify the goodness of the ‘‘fitting’’ among
all Nq equations. In principle, if the examined damage scenario is near to the true damage scenario,
then the corresponding kek would be small. Thus, a simple damage localization algorithm is based on
finding the particular scenario that possesses the smallest residue norm among all suspicious scenarios. While
the idea of using residue information has been commonly adopted by many other localization methods, a
distinctive strength of the present CMSE method is that the accompanying severity estimate can be also
used as an additional information to further judge the correctness of the damage localization because
the damage severity estimates are expected to be very accurate if the true damage locations have been
employed. Therefore, in the present CMSE damage diagnosis, one always expects a small kek together with a
reasonable ba.

In comparison to other diagnosis method, a number of advantages of the CMSE method deserve to be
mentioned: (1) The basic equations constructed to diagnose damage by the traditional modal strain energy
methods must employ the modal information from the same mode of both the baseline and damaged
structures. The basic equations formulated to diagnose damage by the CMSE method are based on cross
modes, as shown in Eq. (10). There is no need for matching modes between the baseline and damaged
structures. Since many equations can be formulated from a single measured mode (with many analytical
modes), minimal modal information from measurements is needed. In addition, any particular measured
mode could be applied. (2) The CMSE method uses ‘‘cross’’ terms between baseline and damaged structures,
therefore, unlike many other methods, there is no need in this method for analytical and measured modes to be
consistent in scale, or normalized in any particular way. There is no need to perform mass normalization. In
fact, the mass matrix information is not required in the CMSE method. (3) The CMSE method is a direct
(non-iterative), exact (without linearization or dropping higher-order terms) solution method. Almost all other
existing MSE methods are either using an iterative solution procedure [5] or involving rough presumptions
and significant approximations [6,7,3]. (4) It is clearly shown from Eq. (10) that the diagnosis for damage
based on the CMSE method has ideally employed both the mode shapes and modal frequencies in each
formulated equation.
3. Numerical studies

The structure adopted in the numerical studies is a three-dimensional five-story frame structure shown
in Fig. 1. The structure is synthesized from a finite element model where each structural member is modelled
as a three-dimensional uniform beam element, and is distinguished by assigning an element number.
The essential geometrical and material properties of the frame structure are given below. The length
of all horizontal members oriented in the x direction is 1m, all horizontal members oriented in the y direction
3m, and all vertical members 1 m. For all members, the Young’s modulus E ¼ 2:1� 1011 Pa, the mass
density per unit length m ¼ 22:035 kg=m, the cross-section area A ¼ 2:825� 10�3 m2 and the moment of
inertia I ¼ 2:89� 10�6 m4. Performing the eigenanalysis, one obtains the first two mode shapes as
exhibited in Fig. 2, where the first mode vibrates dominantly in the long-span y-direction with
frequency 6.9105Hz, and the second mode in the short-span x-direction with frequency 9.3615Hz. It is
realized that the first mode should vibrate in the ‘weak’ direction of the structure. In the current numerical
example, the weak direction is in the long-span direction because when all cross sections and material
properties remain identical for all beams, the stiffnesses of those beams are inversely proportional to
their lengths.

In the following investigation, the synthesized damaged structures include single-damage and multi-damage
scenarios. As far as the damage diagnosis is concerned, both damage localization and damage severity
estimate will be performed simultaneously.
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Fig. 1. The sketch of the three-dimensional five-story frame structure.
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3.1. Single-damage scenarios

Three single-damage scenarios are considered, with the simulated damage element at: (A) member 18—a
vertical column, (B) member 22—a long-span horizontal beam member that oriented longitudinally in the
y-direction (for simplicity, named y-beam), and (C) member 23—a short-span horizontal beam member that
oriented longitudinally in the x-direction (named x-beam), respectively. All simulated damages are with 5%
stiffness loss. Table 1 summarizes the three single-damage scenarios. Listed also are the first two frequencies of
the baseline and the three damaged structures. It is noticed that the first frequency of the damaged structure C
(with a damaged short-span x-beam at 23), and the second frequency of the structure B (with a damaged long-
span y-beam at 22), do not change noticeable from their counterparts of the baseline structure. This also
suggests that a damaged (short-span) x-beam does not have discernible effect on the first mode shape, which
predominantly vibrates in the (long-span) y-direction. Likewise, a damaged (long-span) y-beam would have
negligible effect on the second mode shape that vibrates in the x-direction.

Theoretically, if no damage occurs, the CMSE under the situation i ¼ j is finite, but vanishes when iaj,
due to the orthogonality property associated with the stiffness matrix. If a beam is damaged, the
corresponding CMSE is no longer equal to zero when iaj, however, it tends to be a very small number, even
more so when the two modes are vibrating in physically orthogonal directions. While analytically any two
arbitrary modes can be used in the CMSE method, there are limitations in the numerical implementation.
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Fig. 2. The first mode is vibrating predominantly in the y-direction, and the second mode in the x-direction.

Table 1

A summary of the baseline and damaged structure

Structure Damaged member Stiffness loss (%) 1st frequency 2nd frequency

Baseline None 0 6:9105 9:3615
A Column 18 5 6:9084 9:3561
B Long-span y-beam 22 5 6:8958 9:3615
C Short-span x-beam 23 5 6:9105 9:3480

H. Li et al. / Journal of Sound and Vibration 301 (2007) 481–494 487
In particular, if only translational modes are utilized, then it is essential to choose the two modes vibrating in
the same direction.

3.1.1. Damaged structure A—with a damaged column at element 18

In practice, only limited lower-order modes are relatively easy to be measured. Thus the applications of the
CMSE method should employ minimal numbers of lower-order measured modes. Depicted in Fig. 3 is the
third, fourth and fifth modes of the baseline structure, in which the third mode is a rotation model, and the
fourth and the fifth modes are in the y- and x-direction, respectively. If only the first mode of damaged
structure is measured, i.e., j ¼ f1g, among the first five analytical (baseline) modes, one should not utilize the
second and fifth modes of the baseline structure because of the mode orientation concerned. Taking the first,
third and fourth mode for the baseline structure, i.e., i ¼ f1; 3; 4g, together with j ¼ f1g, one obtains the results
shown in Fig. 4. The top panel of Fig. 4 is the damage severity estimate, a, for each element. One notices that it
correctly estimates a 5% damage at element 18. However, if one presumes that the damage occurs at element
17, then a slightly more than 5% false damage is also estimated. To discern the true damage from a false
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Fig. 3. The third mode is a rotation model, the fourth and the fifth modes are in the y- and x-direction, respectively.

Fig. 4. Results of the CMSE method with a damaged column at element 18, using i ¼ 1; 3; 4 and j ¼ 1.

H. Li et al. / Journal of Sound and Vibration 301 (2007) 481–494488
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Fig. 5. Results of the CMSE method with a damaged column at element 18, using i ¼ 2; 3; 5 and j ¼ 2.
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damage, one has to rely on the information of em and kek for damage localization. The middle panel of
Fig. 4 is the information of em which represents the residue of each equation formed by the CMSE
method. Because the present application employs i ¼ f1; 3; 4g and j ¼ f1g, three equations are formed.
For each element number, there are three points shown in the figure, in which each point represents
the residual from an equation. All three points of em at element 18 coincide at a value equal to zero
that indicates a perfect match among all CMSE equations with the accurate 5% damage estimated.
Displayed at the bottom panel of Fig. 4 is a single quantity of kek for each element. The smallest quantity of
kek points to the damage location. From it, one can clearly see the method correctly obtain the damage
location at element 18.

When the lowest measured mode in the x-direction, i.e. j ¼ f2g is taken, one should use the analytical modes
of i ¼ f2; 3; 5g. The results are shown in Fig. 5. Basically, the results demonstrate the same features shown in
Fig. 4.

Due to space limitation, not shown are damage scenarios with a damaged column at other floors. The same
features as shown in Figs. 4 and 5 were observed.
3.1.2. Damaged structure B—with a damaged long-span beam at element 22

Taking only the first measured mode, j ¼ f1g, which vibrates in the long-span direction, one can use the
analytical modes i ¼ f1; 3; 4g in the CMSE method. Excellent results for both damage severity and localization
are achieved as shown in Fig. 6. However, while taking i ¼ f2; 3; 5g and j ¼ f2g, one cannot properly localize
damage, as shown in Fig. 7. Results presented above indicate that when the damaged member is oriented in
the long-span direction, one should not employ modes that vibrate in the short-span direction. This is
attributed to the fact that the damage of a long-span beam causes negligible change for the modes vibrating in
the short-span direction as suggested in Table 1.
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Fig. 6. Results of the CMSE method with a damaged long-span beam at element 22, using i ¼ 1; 3; 4 and j ¼ 1.

Fig. 7. Results of the CMSE method with a damaged long-span beam at element 22, using i ¼ 2; 3; 5 and j ¼ 2.

H. Li et al. / Journal of Sound and Vibration 301 (2007) 481–494490
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3.1.3. Damaged structure C—with a damaged short-span beam at element 23

Results from using modes i ¼ f2; 3; 5g and j ¼ f2g are given in Fig. 8. Because the damaged member is
oriented in the short-span direction, employing modes that vibrate in the short-span direction will yield
satisfactory results, as expected.

3.1.4. Comparisons with other methods

For comparing the newly developed CMSE method with other MSE methods, the damage diagnosis for all
three damaged structures above will be also conducted by using the traditional Stubbs damage index method
[6] and the MSED method recently developed by Li et al. [3]. While both the CMSE and MSED methods can
localize the damage members correctly for those three damaged structures, the traditional Stubbs damage
index algorithm fails to localize the damage for structures with a damaged beam, long-span or short-span, as
indicated in Table 2(a). The damage severity estimated by using either Stubbs damage index algorithm or
MSED method varies with the number of modes being included in the calculation. For consistence,
estimations of damage severity for all cases are based on using the first two modes of the damaged structure.
Applying the MESD method yields two possible severity estimates, one from transverse modal strain energy,
and the other from axial modal strain energy. Presented in Table 2(b) are the resulting damage severity
estimates for damaged structures A, B and C, by using CMSE, MSED and Stubbs damage index methods.
Because the total modal strain energy at a structural member is dominated by its transverse portion, the
damage severity estimated by the Stubbs damage index method and that by the transverse modal strain energy
of the MSED method are virtually identical. While applying MSED method to damaged structures B and C,
one must use the axial modal strain energy on performing damage detection. Clearly, those estimates by
MSED and Stubbs damage index methods all underestimate the true damage level significantly. Given the fact
that rough approximations were made in the assumption and derivation for the MSED and Stubbs damage
index methods, it is not particularly surprising to obtain poor severity estimates from those methods.
Fig. 8. Results of the CMSE method with a damaged short-span beam at element 23, using i ¼ 2; 3; 5 and j ¼ 2.
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3.2. Multiple-damage scenarios

Assume that two damaged members presented in the previous single-damage scenarios take place
simultaneously in the structure. The following study investigates the capability of the CMSE method on
diagnosing the damage locations for multiple damaged members. Three multiple-damage scenarios, with the
combination of damaged members at 18 and 22, 18 and 23, and 22 and 23, respectively, are investigated.
Again, all damaged members are with 5% loss of stiffness. Table 3 summarizes the three two-damage
structures and their first two frequencies.

First, perform the damage localization for the damaged structure D, with damaged column 18 and y-beam
22. Using the baseline modes i ¼ f1; 3; 4g together with the damaged (measured) mode j ¼ f1g, one obtains the
results of kek shown in Fig. 9. In this figure, each kek value corresponds to a trial of two presumed damage-
elements. For the present 40-element structure, there are 780 possible two-damage combinations. The
underlining damage localization algorithm is the search for the smallest kek among all 780 suspicious
scenarios. From Fig. 9, one can clearly observe that the CMSE method correctly point out the damage
locations at elements 18 and 22. When modes associated with i ¼ f2; 3; 5g and j ¼ f2g are employed, a similar
result as Fig. 9 has been observed (not shown here). Whereas the correct damage locations are identified, the
corresponding damage severity are also estimated accurately. Repeating the same work for the damaged
structures E (with damaged column 18 and x-beam 23) and F (with damaged y-beam 22 and x-beam 23) also
yield excellent results.

One advantage of using the graphic way as shown in Fig. 9 is that it provides a visual result. If a damaged
structure has 3 or more damage elements, due to a higher-order dimensional plot being required, one cannot
use a similar way to show the damage locations. Alternatively, one can search for the numerical minimum of
kek among all suspicious scenarios, and marked the damaged elements directly at the three-dimensional sketch
of the structure, as demonstrated in Fig. 10.

For a 40-element structure with multiple-damage locations, if all possible 3-damage combinations are
considered, there are 9880 scenarios that must be examined. The above direct search algorithm can become
Table 3

A summary of the baseline and damaged structures

Structure Damaged member Stiffness loss (%) 1st frequency 2nd frequency

Baseline None 0 6:9105 9:3615
D Column 18 and y-beam 22 5 6:8938 9:3561
E Column 18 and x-beam 23 5 6:9084 9:3426
F y-beam 22 and x-beam 23 5 6:8958 9:3480

Table 2

The capability of damage localization, and the estimated damage severity by Stubbs damage index, MSED (modal strain energy

decomposition) and CMSE (cross modal strain energy) methods

(a) The capability of damage localization

Structure Stubbs MSED CMSE

A Yes Yes Yes

B No Yes Yes

C No Yes Yes

(b) The estimated damage severity by Stubbs damage index

Structure Stubbs MSED (transverse) MSED (axial) CMSE (%)

A 0.0073% 0.0073% 0 5

B 0 0 0.43% 5

C 0 0 0.48% 5
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Fig. 9. Results of kek with damaged elements 18 and 22, using i ¼ 1; 3; 4 and j ¼ 1.

Fig. 10. Display of the damaged elements directly at the three-dimensional sketch of the structure.

H. Li et al. / Journal of Sound and Vibration 301 (2007) 481–494 493
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time consuming for a structure with too many suspicious scenarios. In such a situation, a better way to search
for multiple-damage locations perhaps should be employed. For instance, one can first use single-damage
scenarios for a multi-damage structure to narrow the potential damaged elements. Sequentially, by eliminating
many undamaged elements, one can significantly reduce the number of suspicious multiple-damage scenarios.

4. Concluding remarks

Assuming that the damage locations are known a priori, Hu et al. [4] developed a CMSE method for the
damage severity estimate. The present paper extends the usage of CMSE to the localization of damage
members for three-dimensional frame structures. One of the major advantages associated with the proposed
CMSE method is that minimal measured modal information is required—often a single measured mode is
sufficient. While traditional modal strain energy methods must pair the modal information from the same
mode for the baseline (analytical) and damaged (measured) structures, no such constraint is required for the
CMSE method. Additionally, the CMSE method does not require the analytical and measured modes to be
consistent in scale, or to be normalized in any specific way.

Numerical studies are conducted for damage localization on several simulated damage scenarios associated
with a three-dimensional five-story frame structure. Those damaged scenarios include single-damage and
multiple-damage structures. Results indicate that the developed CMSE localization method is effective and
robust to locate single and multiple damages in a structure. While analytically any two arbitrary modes can be
used in the CMSE method, there are limitations in the numerical implementation. In particular, when
translational modes are utilized, it is suggested that the two modes—one analytical mode and one measured
mode—are not vibrating in physically orthogonal directions.

The numerical studies in the present article localize and assess the damaged elements under the assumption
that the measured modes and frequencies are free of errors. In reality, it is unavoidable that measurement
errors must exist. Thus, future research effort should emphasize on a thorough investigation about the
robustness of the CMSE method under noisy measurements.
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